The 2nd law of thermodynamics and the greenhouse effect
Posted on 22 October 2010 by TonyWildish
Skeptics sometimes claim that the explanation for global warming contradicts the second law of thermodynamics. But does it? To answer that, first, we need to know how global warming works. Then, we need to know what the second law of thermodynamics is, and how it applies to global warming. Global warming, in a nutshell, works like this:
The sun warms the Earth. The Earth and its atmosphere radiate heat away into space. They radiate most of the heat that is received from the sun, so the average temperature of the Earth stays more or less constant. Greenhouse gases trap some of the escaping heat closer to the Earth's surface, making it harder for it to shed that heat, so the Earth warms up in order to radiate the heat more effectively. So the greenhouse gases make the Earth warmer - like a blanket conserving body heat - and voila, you have global warming. See What is Global Warming and the Greenhouse Effect for a more detailed explanation.
The second law of thermodynamics has been stated in many ways. For us, Rudolf Clausius said it best:
"Heat generally cannot flow spontaneously from a material at lower temperature to a material at higher temperature."
So if you put something hot next to something cold, the hot thing won't get hotter, and the cold thing won't get colder. That's so obvious that it hardly needs a scientist to say it, we know this from our daily lives. If you put an ice-cube into your drink, the drink doesn't boil!
The skeptic tells us that, because the air, including the greenhouse gasses, is cooler than the surface of the Earth, it cannot warm the Earth. If it did, they say, that means heat would have to flow from cold to hot, in apparent violation of the second law of thermodynamics.
So have climate scientists made an elementary mistake? Of course not! The skeptic is ignoring the fact that the Earth is being warmed by the sun, which makes all the difference.
To see why, consider that blanket that keeps you warm. If your skin feels cold, wrapping yourself in a blanket can make you warmer. Why? Because your body is generating heat, and that heat is escaping from your body into the environment. When you wrap yourself in a blanket, the loss of heat is reduced, some is retained at the surface of your body, and you warm up. You get warmer because the heat that your body is generating cannot escape as fast as before.
If you put the blanket on a tailors dummy, which does not generate heat, it will have no effect. The dummy will not spontaneously get warmer. That's obvious too!
Is using a blanket an accurate model for global warming by greenhouse gases? Certainly there are differences in how the heat is created and lost, and our body can produce varying amounts of heat, unlike the near-constant heat we receive from the sun. But as far as the second law of thermodynamics goes, where we are only talking about the flow of heat, the comparison is good. The second law says nothing about how the heat is produced, only about how it flows between things.
To summarise: Heat from the sun warms the Earth, as heat from your body keeps you warm. The Earth loses heat to space, and your body loses heat to the environment. Greenhouse gases slow down the rate of heat-loss from the surface of the Earth, like a blanket that slows down the rate at which your body loses heat. The result is the same in both cases, the surface of the Earth, or of your body, gets warmer.
So global warming does not violate the second law of thermodynamics. And if someone tells you otherwise, just remember that you're a warm human being, and certainly nobody's dummy.
This post is the Basic Version (written by Tony Wildish) of the skeptic argument "The 2nd law of thermodynamics contradicts greenhouse theory".
[Dikran Marsupial] The Earth is a significant source of heat with respect to the atmosphere, which was the point. Solar radiation (mostly visible) heats the surface, which then emits IR that heats the atmosphere. However the atmosphere does emit IR downwards to the surface and hence there is a transfer of heat from the atmosphere to the surface, but it is smaller than the transfer from the surface to the atmosphere (hence it the laws of thermodynamics are not violated).
The example of a binary star was to demosntrate that there is a bidirectional transfer of heat between any two objects above zero degrees Kelvin, but the net flow is from warmer to cooler. Over-extending an analogy beyond what it was intended to show is a common rhetorical tactic to avoid taking on board the substantive point. Please go back and think about the analogy in the light of what I have just written.
Yes, the heat source for the blanket example is the body, which is very apposite to a discussion of the greenhouse effect. The sun does not substantially warm the atmosphere (which is largely transparent to visible light). It warms the surface, which then emits IR which does warm the atmosphere. From the point of view of the atmosphere, it is not being warmed from above by the sun, but from below by the Earth. The fact that the Sun is the source of the Earths heat is irrelevant; the sun is ultimately the source of the heat from my body under the blanket as well.
The paragpraph about what happens if I die is irrelevant (and another example of over-extending an analogy).
DNFTT means "do not feed the troll". Repeatedly bringing up the same points again and again that have been answered already many times, is indistinguishable from trolling. If you want to dispell the appearance of trolling, you need to engage with the explanations you are given, rather than just seeking to over-extend analogies etc.
[DB] As for "DNFTT" that is an acronym for "Do Not Feed The Trolls". It is a suggestion given to the regular participants in an online forum when a newcomer has clearly established 2 things: 1. That they have no interest in actually learning about the topic and 2. Their continued participation in the forum is an exercise designed to waste the time of others by engaging them in conversations that lead nowhere. Similar to Napolean's efforts in Russia or the Soviet's efforts in Afghanistan.
You are incorrect if you think that a planets temperature is strictly related to its distance from its star and that the presence of CO2 makes no difference. This is directly refuted by the observation that the surface of Venus is warmer than the surface of Mercury.
[DB] Added link.
If the energy entering this location is balanced by the energy leaving it, as for example in the atmosphere, the temperature of the atmosphere will not change due to changes in GHG concentration, since GHGs both absorb and emits radiation at a given temperature, nothing will be changed if the amount of CO2 is increased (or decreased). Put another way, if there was no CO2 at all the radiation from the surface would replace that from the atmospheric gases, there would no radiative temperature change. Of course the surface is warmer than the upper atmosphere but that is due to gravitation, not radiation. Further you wrote:- (ii) it is irrelevant to the greenhouse effect because as far as the atmosphere is concerned it is heated from below by IR radiated from the surface, not from the Sun above" Have we not already agreed that the Earth doesn't have a significant heat source inside it? I agree that, if the Earth had a heat source inside it, big enough for, let us say 240W/m^2, then its would be closely related to the concentration of GHGs (and the emissivity of the surface). Further, as things stand, the Earth's average temperature would be what it is now, except it would be uniform (no frozen poles!) In my physics this planet, with its internal 240W/m^2, has a temperature that is very dependent on it emissivity. To explain, if it was a metal planet its surface temperature would be very high, highest of all if it was gold plated (gold has the lowest emissivity of all common metals). However if this (gold plated?) planet would have a GHG atmosphere its temperature would be lowered, the amount it was lowered would depend very much on the mass of the GHGs. But do not be surprised that such a planet (with no star nearby) would have a uniform surface temperature.Please do not attempt to extend the thought experiment in any direction, and give a direct answer to the question. We will get onto the discussion of the temperature of the body and its energy balance later, once we have agreed the nature of its radiation.
2/ "or does it [A] continue to emit photons with total power according to the Stefan-Boltzmann law " I think this is the same question, no 'or' about it; if A is still above 0K then A continues to emit photons, some of which will continue to be intercepted by B. 3/ "ii) Some photons from A will still hit and be absorbed by B, thus transferring some energy from A to B." No, there would be no change in the energy of either A or B because they are at the same temperature.