Are surface temperature records reliable?
What the science says...
Select a level... | Basic | Intermediate | Advanced | ||||
The warming trend is the same in rural and urban areas, measured by thermometers and satellites, and by natural thermometers. |
Climate Myth...
Temp record is unreliable
"We found [U.S. weather] stations located next to the exhaust fans of air conditioning units, surrounded by asphalt parking lots and roads, on blistering-hot rooftops, and near sidewalks and buildings that absorb and radiate heat. We found 68 stations located at wastewater treatment plants, where the process of waste digestion causes temperatures to be higher than in surrounding areas.
In fact, we found that 89 percent of the stations – nearly 9 of every 10 – fail to meet the National Weather Service’s own siting requirements that stations must be 30 meters (about 100 feet) or more away from an artificial heating or radiating/reflecting heat source." (Watts 2009)
At a glance
It's important to understand one thing above all: the vast majority of climate change denialism does not occur in the world of science, but on the internet. Specifically in the blog-world: anyone can blog or have a social media account and say whatever they want to say. And they do. We all saw plenty of that during the Covid-19 pandemic, seemingly offering an open invitation to step up and proclaim, "I know better than all those scientists!"
A few years ago in the USA, an online project was launched with its participants taking photos of some American weather stations. The idea behind it was to draw attention to stations thought to be badly-sited for the purpose of recording temperature. The logic behind this, they thought, was that if temperature records from a number of U.S. sites could be discredited, then global warming could be declared a hoax. Never mind that the U.S. is a relatively small portion of the Earth;s surface. And what about all the other indicators pointing firmly at warming? Huge reductions in sea ice, poleward migrations of many species, retreating glaciers, rising seas - that sort of thing. None of these things apparently mattered if part of the picture could be shown to be flawed.
But they forgot one thing. Professional climate scientists already knew a great deal about things that can cause outliers in temperature datasets. One example will suffice. When compiling temperature records, NASA's Goddard Institute for Space Studies goes to great pains to remove any possible influence from things like the urban heat island effect. That effect describes the fact that densely built-up parts of cities are likely to be a bit warmer due to all of that human activity.
How they do this is to take the urban temperature trends and compare them to the rural trends of the surrounding countryside. They then adjust the urban trend so it matches the rural trend – thereby removing that urban effect. This is not 'tampering' with data: it's a tried and tested method of removing local outliers from regional trends to get more realistic results.
As this methodology was being developed, some findings were surprising at first glance. Often, excess urban warming was small in amount. Even more surprisingly, a significant number of urban trends were cooler relative to their country surroundings. But that's because weather stations are often sited in relatively cool areas within a city, such as parks.
Finally, there have been independent analyses of global temperature datasets that had very similar results to NASA. 'Berkeley Earth Surface Temperatures' study (BEST) is a well-known example and was carried out at the University of California, starting in 2010. The physicist who initiated that study was formerly a climate change skeptic. Not so much now!
Please use this form to provide feedback about this new "At a glance" section, which was updated on May 27, 2023 to improve its readability. Read a more technical version below or dig deeper via the tabs above!
Further details
Temperature data are essential for predicting the weather and recording climate trends. So organisations like the U.S. National Weather Service, and indeed every national weather service around the world, require temperatures to be measured as accurately as possible. To understand climate change we also need to be sure we can trust historical measurements.
Surface temperature measurements are collected from more than 30,000 stations around the world (Rennie et al. 2014). About 7000 of these have long, consistent monthly records. As technology gets better, stations are updated with newer equipment. When equipment is updated or stations are moved, the new data is compared to the old record to be sure measurements are consistent over time.
In 2009 allegations were made in the blogosphere that weather stations placed in what some thought to be 'poor' locations could make the temperature record unreliable (and therefore, in certain minds, global warming would be shown to be a flawed concept). Scientists at the National Climatic Data Center took those allegations very seriously. They undertook a careful study of the possible problem and published the results in 2010. The paper, "On the reliability of the U.S. surface temperature record" (Menne et al. 2010), had an interesting conclusion. The temperatures from stations that the self-appointed critics claimed were "poorly sited" actually showed slightly cooler maximum daily temperatures compared to the average.
Around the same time, a physicist who was originally hostile to the concept of anthropogenic global warming, Dr. Richard Muller, decided to do his own temperature analysis. This proposal was loudly cheered in certain sections of the blogosphere where it was assumed the work would, wait for it, disprove global warming.
To undertake the work, Muller organized a group called Berkeley Earth to do an independent study (Berkeley Earth Surface Temperature study or BEST) of the temperature record. They specifically wanted to answer the question, “is the temperature rise on land improperly affected by the four key biases (station quality, homogenization, urban heat island, and station selection)?" The BEST project had the goal of merging all of the world’s temperature data sets into a common data set. It was a huge challenge.
Their eventual conclusions, after much hard analytical toil, were as follows:
1) The accuracy of the land surface temperature record was confirmed;
2) The BEST study used more data than previous studies but came to essentially the same conclusion;
3) The influence of the urban stations on the global record is very small and, if present at all, is biased on the cool side.
Muller commented: “I was not expecting this, but as a scientist, I feel it is my duty to let the evidence change my mind.” On that, certain parts of the blogosphere went into a state of meltdown. The lesson to be learned from such goings on is, “be careful what you wish for”. Presuming that improving temperature records will remove or significantly lower the global warming signal is not the wisest of things to do.
The BEST conclusions about the urban heat effect were nicely explained by our late colleague, Andy Skuce, in a post here at Skeptical Science in 2011. Figure 2 shows BEST plotted against several other major global temperature datasets. There may be some disagreement between individual datasets, especially towards the start of the record in the 19th Century, but the trends are all unequivocally the same.
Finally, temperatures measured on land are only one part of understanding the climate. We track many indicators of climate change to get the big picture. All indicators point to the same conclusion: the global temperature is increasing.
See also
Understanding adjustments to temperature data, Zeke Hausfather
Explainer: How data adjustments affect global temperature records, Zeke Hausfather
Time-of-observation Bias, John Hartz
Check original data
All the Berkeley Earth data and analyses are available online at http://berkeleyearth.org/data/.
Plot your own temperature trends with Kevin's calculator.
Or plot the differences with rural, urban, or selected regions with another calculator by Kevin.
NASA GISS Surface Temperature Analysis (GISSTEMP) describes how NASA handles the urban heat effect and links to current data.
NOAA Global Historical Climate Network (GHCN) Daily. GHCN-Daily contains records from over 100,000 stations in 180 countries and territories.
Last updated on 27 May 2023 by John Mason. View Archives
- GHCN (Global Historical Climatology Network)
- The National Climate Data and Information Archive of Environment Canada
- and Weather Underground, an independent weather portal company (a spinoff from the University of Michigan)
The three curves have some family resemblance, but beyond that their physical content is radically different. Weather Underground shows an almost steady decline since 1989 (that is, a 0.8°C cooling), GHCN a huge warming (more than a centigrade in three decades, almost 1.27°C in five years between 1994 and 1999) while Environment Canada something in between with practically no trend since 1985. Up to about 1995 the three curves go together nicely. With some offset correction (which has no effect on temperature anomaly trends) they could be brought even closer. The same is true after 1998. Therefore in this particular case most of the action happened in just four years between 1995 and 1998. In this period the divergence is very noticeable, so the next thing to do is to have a closer look at these years in Canadian datasets and to determine the exact cause(es) of discrepancy. Now I do have all the data necessary to do the analysis at my fingertips. Unfortunately I do not have too much time for this job, you may have to wait a bit. Neither was it always easy to collect the data. My IP has even got banned from Weather Underground for a while because they might have noticed the work the download script had been doing. Anyway, I have no intention to publish their dataset (as long as it stays put on their website), I just use it for statistical purposes. The spatio-temporal coverage patterns of the three datasets are different inside Canada. Weather Underground, understandably, has an excellent recent coverage, getting sparser as we go back in time. Fortunately for some sites their archive dataset goes back to January, 1973 (e.g Churchill Falls, Newfoundland). They also use WMO station numbers (at least in Canada), which is convenient (the connection between four letter airport identifiers and WMO numbers can get obscure in some cases). It is just the opposite with Environment Canada. Their coverage in early times is even better, than the previous dataset's (they go back to March, 1840), but it is getting sparser as we approach the present (unfortunately their station identifiers are different from those used by either GHCN or Weather Underground). This tendency of station death is even more pronounced in GHCN. It is not easy to understand why. GHCN has a particularly poor recent coverage in the Canadian Arctic, although this area is supposed to be very important for verification of computational climate models (Arctic Amplification and all). It is funny, that even the raw map used by GISS misses a fair number of the arctic islands that belong to Canada and shows sea in their place. At the same time Arctic coverage of Environment Canada is excellent. Their data are also said to be quality controlled and of course digitized. Why can't it be fed into GHCN? Looks like a mystery (I know there used to be a war between the two countries back in 1812 when seaborne British terrorists ate the President's dinner and set the White House aflame, but I thought it was over some time ago). Anyway, the very practice of making adjustments to a raw dataset prior to publication is a strange one, which would be considered questionable in any other branch of science. But should adjustments be done either way, if their overall magnitude is comparable to the long term trend, anything is measured but the trend itself. The double adjustment to raw Canadian data also makes understandable why USHCN have got a different treat than the rest of the world. It would be pretty venturesome to meddle with US raw data directly for the US, despite the recent legislative efforts of both major parties to put an end to this preposterous situation, is still an open society, more so than most other countries of the world. Therefore it was advisable to introduce US adjustments only in v2.mean_adj, which is a unique feature, not done for the rest. As the US is only a tiny fraction of the globe, at first sight it does not make much sense to go into such pains. But without the 0.52°C upward adjustment of the US trend, data from there would get inconsistent with neighboring Canadian ones. What is more, it would be somewhat inconvenient to explain why the US does not have this warming thing, but still needs cap & trade. It is also noticeable, that the strange divergence, if global, does not increase one's confidence in computational climate models parametrized on this very dataset.